题目内容
【题目】如图,在直线l上摆放着三个三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=_____,S2=_____.
【答案】2 6.
【解析】
根据题意,可以证明S2与S1两个平行四边形的高相等,长是S1的3倍,S3与S2的长相等,高是S3的,这样就可以把S1和S3用S2来表示,从而计算出S2的值.
根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,∴AB∥HF∥DC∥GN,设AC与FH交于P,CD与HG交于Q,∴△PFC、△QCG和△NGE是正三角形.
∵F、G分别是BC、CE的中点,∴MF=AC=BC,PF=AB=BC.
又∵BC=CE=CG=GE,∴CP=MF,CQ=BC=3PF,QG=GC=CQ=AB=3CP,∴S1=S2,S3=3S2.
∵S1+S3=20,∴S2+3S2=20,∴S2=6,∴S1=2.
故答案为:2;6.
练习册系列答案
相关题目