题目内容
【题目】如图,在直角坐标系中,已知点B(8,0),等边三角形OAB的顶点A在反比例函数y=的图象上.
(1)求反比例函数的表达式;
(2)把△OAB向右平移a个单位长度,对应得到△O′A′B′,当这个函数图象经过△O′A′B′一边的中点时,求a的值.
【答案】(1)y=;(2)a的值为2或6.
【解析】
(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;
(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.
解:(1)如图1,过点A作AC⊥OB于点C,
∵△OAB是等边三角形,
∴∠AOB=60°,OC=OB,
∵B(8,0),
∴OB=OA=8,
∴OC=4,AC=.
把点A(4,)代入y=,得k=.
∴反比例函数的解析式为y=;
(2)分两种情况讨论:
①如图2,点D是A′B′的中点,过点D作DE⊥x轴于点E.
由题意得A′B′=8,∠A′B′E=60°,
在Rt△DEB′中,B′D=4,DE=,B′E=2.
∴O′E=6,
把y=代入y=,得x=8,
∴OE=8,
∴a=OO′=8﹣6=2;
②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.
由题意得A′O′=8,∠A′O′B′=60°,
在Rt△FO′H中,FH=,O′H=2.
把y=代入y=,得x=8,
∴OH=8,
∴a=OO′=8﹣2=6,
综上所述,a的值为2或6.
【题目】达州市图书馆今年4月23日开放以来,受到市民的广泛关注.5月底,八年级(1)班学生小颖对全班同学这一个多月来去新图书馆的次数做了调查统计,并制成了如图不完整的统计图表.
八年级(1)班学生去新图书馆的次数统计表
去图书馆的次数 | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人数 | 8 | 12 | a | 10 | 4 |
请你根据统计图表中的信息,解答下列问题:
(1)填空:a= ,b= ;
(2)求扇形统计图中“0次”的扇形所占圆心角的度数;
(3)从全班去过该图书馆的同学中随机抽取1人,谈谈对新图书馆的印象和感受.求恰好抽中去过“4次及以上”的同学的概率.