题目内容
【题目】如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点C,交OB于点D,若OA=4,则阴影部分的面积为_____.
【答案】π.
【解析】
连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.
解:连接OC,作CH⊥OB于H,
∵∠AOB=90°,∠B=30°,
∴∠OAB=60°,AB=2OA=8,
由勾股定理得,OB==,
∵OA=OC,∠OAB=60°,
∴△AOC为等边三角形,
∴∠AOC=60°,
∴∠COB=30°,
∴CO=CB,CH=OC=2,
∴阴影部分的面积=﹣×4×4×+××2﹣=π,
故答案为:π.
练习册系列答案
相关题目
【题目】某蔬菜市场为指导某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供的信息如下:
信息1:售价和月份满足一次函数关系,如下表所示.
月份 | … | 3 | 6 | … |
售价 | … | 5 | 3 | … |
信息2:成本和月份满足二次函数关系,并且知道该种蔬菜在6月成本达到最低为1元/千克,9月成本为4元/千克.
根据以上信息回答下列问题:
(1)在7月,这种蔬菜的成本是多少元每千克?
(2)在过去的一年中,某商家平均每天卖出该种蔬菜,则哪个月的利润最大,最大利润为多少?(一个月按30天计算)