题目内容
【题目】已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.
(1)问题的结论:DF______AE.
(2)证明思路欲证DF______AE,只要证∠3=______.
(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,( )
∴∠CDA=∠DAB=______°(垂直定义)
∵∠1=∠2,( )
∴∠CDA-∠1=______-______,(等式的性质)
即∠3=______
∴DF______AE( , )
【答案】(1)∥;(2)∥,∠4;(3)已知;90;已知;∠DAB;∠2;∠4;∥;内错角相等,两直线平行.
【解析】
(1)根据题意可知:DF∥AE;
(2)欲证DF∥AE,只要证∠3=∠4即可;
(3)根据已知条件、以及平行线的判定进行填空即可.
(1)问题的结论:DF∥AE.
(2)证明思路欲证DF∥AE,只要证∠3=∠4.
(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,(已知)
∴∠CDA=∠DAB=90°.(垂直定义)
又∠1=∠2,(已知)
∴∠CDA-∠1=∠DAB-∠2,(等式的性质)
即∠3=∠4.
∴DF∥AE.(内错角相等,两直线平行).
故答案为:(1)∥;(2)∥,∠4;(3)已知;90;已知;∠DAB;∠2;∠4;∥;内错角相等,两直线平行.
【题目】数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由. |
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
图1 图2
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).