题目内容

【题目】在平面直角坐标系中,已知A、B是抛物线y=ax2(a>0)上两个不同的点,其中A在第二象限,B在第一象限,

(1)如图1所示,当直线AB与x轴平行,∠AOB=90°,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.
(2)如图2所示,在1所求得的抛物线上,当直线AB与x轴不平行,∠AOB仍为90°时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.
(3)在2的条件下,若直线y=﹣2x﹣2分别交直线AB,y轴于点P、C,直线AB交y轴于点D,且∠BPC=∠OCP,求点P的坐标.

【答案】
(1)

【解答】解:如图1,∵AB与x轴平行,

根据抛物线的对称性有AE=BE=1,

∵∠AOB=90°,

∴OE=AB=1,

∴A(﹣1,1)、B(1,1),

把x=1时,y=1代入y=ax2得:a=1,

∴抛物线的解析式y=x2

A、B两点的横坐标的乘积为xAxB=﹣1


(2)

xAxB=﹣1为常数,

如图2,过A作AM⊥x轴于M,BN⊥x轴于N,

∴∠AMO=∠BNO=90°,

∴∠MAO+∠AOM=∠AOM+∠BON=90°,

∴∠MAO=∠BON,

∴△AMO∽△BON,

∴OMON=AMBN,

设A(xA,yA),B(xB,yB),

∵A(xA,yA),B(xB,yB)在y=x2图象上,

∴,yA=,yB=

∴﹣xAxB=yAyB=

∴xAxB=﹣1为常数;


(3)

设A(m,m2),B(n,n2),

如图3所示,过点A、B分别作x轴的垂线,垂足为E、F,则易证△AEO∽△OFB.

,即,整理得:mn(mn+1)=0,

∵mn≠0,∴mn+1=0,即mn=﹣1.

设直线AB的解析式为y=kx+b,联立,得:x2﹣kx﹣b=0.

∵m,n是方程的两个根,∴mn=﹣b.

∴b=1.

∵直线AB与y轴交于点D,则OD=1.

易知C(0,﹣2),OC=2,∴CD=OC+OD=3.

∵∠BPC=∠OCP,∴PD=CD=3.

设P(a,﹣2a﹣2),过点P作PG⊥y轴于点G,则PG=﹣a,GD=OG﹣OD=﹣2a﹣3.

在Rt△PDG中,由勾股定理得:PG2+GD2=PD2

即:(﹣a)2+(﹣2a﹣3)2=32,整理得:5a2+12a=0,

解得a=0(舍去)或a=

当a=时,﹣2a﹣2=

∴P().


【解析】(1)如图1,由AB与x轴平行,根据抛物线的对称性有AE=BE=1,由于∠AOB=90°,得到OE=AB=1,求出A(﹣1,1)、B(1,1),把x=1时,y=1代入y=ax2得:a=1得到抛物线的解析式y=x2 , A、B两点的横坐标的乘积为xAxB=﹣1
(2)如图2,过A作AM⊥x轴于M,BN⊥x轴于N得到∠AMO=∠BNO=90°,证出△AMO∽△BON,得到OMON=AMBN,设A(xA , yA),B(xB yB),由于A(xA , yA),B(xB , yB)在y=x2图象上,得到yA=,yB=,即可得到结论;
(3)设A(m,m2),B(n,n2).作辅助线,证明△AEO∽△OFB,得到mn=﹣1.再联立直线m:y=kx+b与抛物线y=x2的解析式,由根与系数关系得到:mn=﹣b,所以b=1;由此得到OD、CD的长度,从而得到PD的长度;作辅助线,构造Rt△PDG,由勾股定理求出点P的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网