题目内容
【题目】如图,平面直角坐标系中,直线AB交y轴于点A(0,1),交x轴于点B(3,0).直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,在点D的上方,设P(1,n).
(1)求直线AB的解析式;
(2)求△ABP的面积(用含n的代数式表示);
(3)当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.
【答案】(1)y=x+1;(2);(3)点C的坐标是(3,4)或(5,2)或(3,2).
【解析】
(1)把的坐标代入直线的解析式,即可求得的值,然后在解析式中,令,求得的值,即可求得的坐标;
(2)利用即可求出结果;
(3)分三种情况讨论,当、、分别为等腰直角三角形的直角顶点时,求出点的坐标分别为、、。
(1)设直线AB的解析式是y=kx+b
把A(0,1),B(3,0)代入得:
解得:
∴直线AB的解析式是:
(2)过点A作AM⊥PD,垂足为M,则有AM=1,
∵x=1时,=,P在点D的上方,
∴PD=n﹣,
由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
∴,
∴;
(3)当S△ABP=2时,,解得n=2,∴点P(1,2).
∵E(1,0), ∴PE=BE=2,
∴∠EPB=∠EBP=45°.
第1种情况,如图1,∠CPB=90°,BP=PC,
过点C作CN⊥直线x=1于点N.
∵∠CPB=90°,∠EPB=45°,
∴∠NPC=∠EPB=45°.
又∵∠CNP=∠PEB=90°,BP=PC,
∴△CNP≌△BEP,∴PN=NC=EB=PE=2,
∴NE=NP+PE=2+2=4, ∴C(3,4).
第2种情况,如图2, ∠PBC=90°,BP=BC,
过点C作CF⊥x轴于点F.
∵∠PBC=90°,∠EBP=45°,
∴∠CBF=∠PBE=45°.
又∵∠CFB=∠PEB=90°,BC=BP,
∴△CBF≌△PBE.
∴BF=CF=PE=EB=2,
∴OF=OB+BF=3+2=5, ∴C(5,2).
3种情况,如图3,∠PCB=90°,
∴∠CPB=∠EBP=45°,
∴△PCB≌△ BEP,
∴PC=CB=PE=EB=2,∴C(3,2).
∴以PB为边在第一象限作等腰直角三角形BPC,
综上所述点C的坐标是(3,4)或(5,2)或(3,2).