题目内容
【题目】如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.
【答案】
【解析】
根据题意作E关于AD的对称点M,连接CM交AD于P,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CP+EP=CM,根据垂线段最短得出CP+EP≥,即可得出答案.
作E关于AD的对称点M,连接CM交AD于P,连接EP,过C作CN⊥AB于N,
∵AB=AC=13,BC=10,AD是BC边上的中线,
∴BD=DC=5,AD⊥BC,AD平分∠BAC,
∴M在AB上,
在Rt△ABD中,由勾股定理得:AD==12,
∴S△ABC=×BC×AD=×AB×CN,
∴CN==,
∵E关于AD的对称点M,
∴EP=PM,
∴CP+EP=CP+PM=CM,
根据垂线段最短得出:CM≥CN,
即CP+EP≥,
即CP+EP的最小值是,
故答案为:.
练习册系列答案
相关题目
【题目】某校中午学生用餐比较拥挤,为建议学校分年级错时用餐,李老师带领数学学习小组在某天随机调查了部分学生,统计了他们从下课到就餐结束所用的时间,并绘制成统计表和如图所示的不完整统计图.
根据以上提供的信息,解答下列问题:
(1)表中a=_____,b=_____,c=_____,补全频数分布直方图;
(2)此次调查中,中位数所在的时间段是_____min.
时间分段/min | 频(人)数 | 百分比 |
10≤x<15 | 8 | 20% |
15≤x<20 | 14 | a |
20≤x<25 | 10 | 25% |
25≤x<30 | b | 12.50% |
30≤x<35 | 3 | 7.50% |
合计 | c | 100% |
(3)这所学校共有1200人,试估算从下课到就餐结束所用时间不少于20min的共有多少人?