题目内容
【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是 .
【答案】 ﹣2≤BE<3
【解析】解:如图,
由题意知,∠AEC=90°,
∴E在以AC为直径的⊙M的 上(不含点C、可含点N),
∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),
∵AB=5,AC=4,
∴BC=3,
作MF⊥AB于F,
∴∠AFM=∠ACB=90°,∠FAM=∠CAB,
∴△AMF∽△ABC,
∴ = ,即 ,得MF= ,
∴AF= = ,
则BF=AB﹣AF= ,
∴BM= = ,
∴BE长度的最小值BE′=BM﹣ME′= ﹣2,
BE最长时,即E与C重合,
∵BC=3,且点E与点C不重合,
∴BE<3,
综上, ﹣2≤BE<3,
所以答案是: ﹣2≤BE<3.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目