题目内容
【题目】如图,在中,、两点分别在边、上,,与相交于点,若的面积为,则的面积为________.
【答案】
【解析】
根据等高的两个三角形底边的关系,可得两个三角形面积的关系,根据相似三角形判定与性质,可得AE:EG=AF:FD=3:4,根据比例的性质,可得AF:AD=3:7,再根据等高的两个三角形底边的关系,可得两个三角形面积的关系.
如图,过D作DG∥BE,交AC与G,
∵AE:EC=CD:BD=1:2,△ABC的面积为21,
∴S△ABE:S△BCE=S△ADC:S△ABD=1:2,
∴S△ABD=S△ABC=×21=14,
∵DG∥BE,
∴△CDG∽△CBE,△AEF∽△AGD,
∴==,
GE=CE,AE=CE,
AE:EG=AF:FD=3:4,
AF:AD=3:7.
S△ABF:S△ABD=3:7,
S△ABF==37×14=6,
故答案为:6.
练习册系列答案
相关题目
【题目】二次函数(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
给出了结论:
(1)二次函数有最小值,最小值为﹣3;
(2)当时,y<0;
(3)二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.
则其中正确结论的个数是
A. 3 B. 2 C. 1 D. 0