题目内容
【题目】如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.
【答案】证明:∵矩形ABCD中,AB∥CD,
∴∠BAF=∠AED.
∵BF⊥AE,
∴∠AFB=90°.
∴∠AFB=∠D=90°.
∴△ABF∽△EAD
【解析】根据两角对应相等的两个三角形相似可解.
【考点精析】本题主要考查了矩形的性质和相似三角形的判定的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.
练习册系列答案
相关题目