题目内容
【题目】已知AB∥CD.
(1)如图①,若∠ABE=30°,∠BEC=148°,求∠ECD的度数;
(2)如图②,若CF∥EB,CF平分∠ECD,试探究∠ECD与∠ABE之间的数量关系,并证明.
【答案】(1)∠ECD=62°;(2)ABE=∠ECD,证明详见解析.
【解析】
(1)过点E作EF∥AB,根据平行线的性质即可得到∠ECD的度数;
(2)延长BE和DC相交于点G,利用平行线的性质、三角形的外角以及角平分线的性质即可得到答案.
(1)如图①,过点E作EF∥AB,
∵AB∥CD,
∴AB∥EF∥CD,
∴∠ABE=∠BEF,∠FEC+∠ECD=180°,
∵∠ABE=30°,∠BEC=148°,
∴∠FEC=118°,
∴∠ECD=180°-118°=62°.
(2)如图②,延长BE和DC相交于点G,
∵AB∥CD,
∴∠ABE=∠G,
∵BE∥CF,
∴∠GEC=∠ECF,
∵∠ECD=∠GEC+∠G,
∴∠ECD=∠ECF+∠ABE,
∵CF平分∠ECD,
∴∠ECF=∠DCF,
∴∠ECD=∠ECD+∠ABE,
∴∠ABE=∠ECD.
练习册系列答案
相关题目