题目内容
【题目】顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是 形.
【答案】矩形
【解析】
试题分析:根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.
解:矩形.理由如下:
∵E、F、G、H分别为各边的中点,
∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,(三角形的中位线平行于第三边)
∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)
∵AC⊥BD,EF∥AC,EH∥BD,
∴∠EMO=∠ENO=90°,
∴四边形EMON是矩形(有三个角是直角的四边形是矩形),
∴∠MEN=90°,
∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).
练习册系列答案
相关题目
【题目】某种袋装奶粉标明净含量为400 g,抽检其中8袋。记录如下:
编 号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
差值/g | -4.5 | +5 | 0 | +3 | 0 | 0 | +2 | -5 |
(1)净含量最大的编号为 ,净含量最小的编号为 ;
(2)这8袋抽检奶粉的总净含量是多少?