题目内容
【题目】计算
(1)(x+2y)(x2﹣4y2)(x﹣2y)
(2)999×1001
【答案】(1)x4﹣8x2y2+16y4;(2)999999.
【解析】
(1)根据平方差公式和完全平方公式计算即可;
(2)根据平方差公式计算即可.
(1)(x+2y)(x2﹣4y2)(x﹣2y)=(x2﹣4y2)(x2﹣4y2)=x4﹣8x2y2+16y4;
(2)999×1001=(1000﹣1)(1000+1)=1000000﹣1=999999.
【题目】为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:
型号 | 占地面积 (单位:m2/个 ) | 使用农户数 (单位:户/个) | 造价 (单位:万元/个) |
A | 15 | 18 | 2 |
B | 20 | 30 | 3 |
已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.
(1)满足条件的方案共有几种?写出解答过程;
(2)通过计算判断,哪种建造方案最省钱?
【题目】提出问题:当x>0时如何求函数y=x+的最大值或最小值?
分析问题:前面我们刚刚学过二次函数的相关知识,知道求二次函数的最值时,我们可以利用它的图象进行猜想最值,或利用配方可以求出它的最值.
例如我们求函数y=x﹣2(x>0)的最值时,就可以仿照二次函数利用配方求最值的方法解决问题;y=x﹣2=()2﹣2﹣2+1﹣1=(﹣1)2﹣1即当x=1时,y有最小值为﹣1
解决问题
借鉴我们已有的研究函数的经验,探索函数y=x+(x>0)的最大(小)值.
(1)实践操作:填写下表,并用描点法画出函数y=x+(x>0)的图象:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | … |
(2)观察猜想:观察该函数的图象,猜想
当x= 时,函数y=x+(x>0)有最 值(填“大”或“小”),是 .
(3)推理论证:利用上述例题,请你尝试通过配方法求函数y=x+(x>0)的最大(小)值,以证明你的猜想.知识能力运用:直接写出函数y=﹣2x﹣(x>0)当x= 时,该函数有最 值(填“大”或“小”),是 .
【题目】王慧同学不但会学习,而且也很会安排时间干好家务活,煲饭、炒菜、擦窗等样样都行,是爸爸妈妈的好帮手,某一天放学回家后,她完成各项家务活及所需时间如表:王慧同学完成以上各项家务活,至少需要 分钟.(注:各项工作转接时间忽略不计)
家务项目 | 擦窗 | 洗菜 | 洗饭煲、洗米 | 炒菜(用煤气炉) | 煲饭(用电饭煲) |
完成各项家务所需时间 | 5分钟 | 4分钟 | 3分钟 | 20分钟 | 30分钟 |