题目内容
【题目】已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为、 (单位:cm,≠0),已知A、C、P、Q四点为顶 点的四边形是平行四边形,求与满足的数量关系式.
【答案】(1)证明见解析;AF=5cm.(2)t=,a+b=12(ab≠0).
【解析】
试题分析:(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;根据勾股定理即可求得AF的长;
(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
②分三种情况讨论可知a与b满足的数量关系式.
试题解析:(1)①∵四边形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,
∴四边形AFCE为平行四边形,
又∵EF⊥AC,
∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,
由勾股定理得42+(8-x)2=x2,
解得x=5,
∴AF=5cm.
(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=CD+AD-4t=12-4t,即QA=12-4t,
∴5t=12-4t,
解得t=,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=秒.
②由题意得,四边形APCQ是平行四边形时,点P、Q在互相平行的对应边上.
分三种情况:
i)如图1,当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)如图2,当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)如图3,当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
【题目】一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
A种水果/箱 | B种水果/箱 | |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?
(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?