题目内容
【题目】如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.
(1)求证:AD⊥CD;
(2)若AD=2, ,求⊙O的半径R的长.
【答案】(1)证明见解析;(2)⊙O的半径R的长为.
【解析】试题分析:(1)连接OC,由题意得OC⊥CD.又因为AC平分∠DAB,则∠1=∠2=∠DAB.即可得出AD∥OC,则AD⊥CD;
(2)连接BC,则∠ACB=90°,可证明△ADC∽△ACB.则,从而求得R.
试题解析:(1)证明:连接OC,
∵直线CD与⊙O相切于C点,AB是⊙O的直径,
∴OC⊥CD.
又∵AC平分∠DAB,
∴∠1=∠2=∠DAB.
又∠COB=2∠1=∠DAB,
∴AD∥OC,
∴AD⊥CD.
(2)连接BC,则∠ACB=90°,
在△ADC和△ACB中
∵∠1=∠2,∠3=∠ACB=90°,
∴△ADC∽△ACB.
∴
∴R=
练习册系列答案
相关题目