题目内容
【题目】在直角三角形ABC中,∠C=90°,点O为AB上的一点,以点O为圆心,OA为半径的圆弧与BC相切于点D,交AC于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)已知AE=2,DC=,求圆弧的半径.
【答案】(1)证明见解析;(2)2.
【解析】试题分析:(1)根据切线的性质可得OD⊥BC,即得∠ODB=∠C=90°,则可得OD∥AC,根据平行线的性质可得∠ODA=∠CAD,根据圆的基本性质可得∠ODA=∠OAD,问题得证;
(2)过O作OH⊥AC于H,根据垂径定理可得,由OD∥AC,OH⊥AC,∠C=90°可求得OH=DC=,在Rt△ABC中,根据勾股定理即可求得结果.
(1)∵OA为半径的圆弧与BC相切于点D
∴OD⊥BC
∴∠ODB=∠C=90°
∴OD∥AC
∴∠ODA=∠CAD
又∵OA=OD
∴∠ODA=∠OAD
∴∠CAD=∠OAD
∴AD平分∠BAC;
(2)过O作OH⊥AC于H
∴
∵OD∥AC,OH⊥AC,∠C=90°,
∴OH=DC=
∴在Rt△ABC中,圆弧的半径OA=.
练习册系列答案
相关题目
【题目】某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 2000 |
频率 | 0.365 | 0.328 | 0.330 | 0.334 | 0.336 | 0.332 | 0.333 |
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率