题目内容
【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;②AD:AE=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2 OG。其中正确结论的序号是______.
【答案】①④⑤
【解析】①根据正方形性质和折叠性质得出和,即可求解;
②根据直角三角形的直角边小于斜边,即可得出结论;
③根据角平分线的性质得出三角形的高相等,再分析底边长即可;
④证明四条边相等即可;
⑤由折叠的性质设进一步表示的长度,结合相似三角形进行求解即可.
因为在正方形纸片ABCD中,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,
所以
可求, 所以①正确,
因为tan∠AED=
因为AE=EF<BE,
所以
因为AD=AB,因此②错.
因为AG=FG>OG,△AGD与△OGD同高,
所以 所以③错.
根据题意可得:AE=EF,AG=FG,又因为EF∥AC,
所以∠FEG=∠AGE,又因为∠AEG=∠FEG,
所以∠AEG=∠AGE,所以AE=AG=EF=FG,
所以四边形AEFG是菱形,因此④正确.
由折叠的性质设BF=EF=AE=1,则
由此可求,
因为EF∥AC,
所以△DOG∽△DFE,
所以
∴
在直角三角形BEF中,
所以△BEF是等腰直角三角形,同理可证△OFG是等腰直角三角形,
在等腰直角和等腰直角中,
所以BE=2OG.因此⑤正确.
故答案为:①④⑤.
练习册系列答案
相关题目