题目内容
【题目】如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.
(1)求直线和双曲线的解析式;
(2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;
(3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.
①求直线的解析式;
②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.
【答案】(1);(2);(3)点的坐标为或.
【解析】
(1)待定系数法求一次函数解析式和反比例函数解析式,将已知点坐标代入并解方程(组)即可;
(2)先求出直线l1与坐标轴的交点坐标,可得:△COE是等腰直角三角形,再由翻折可得:OCHE是正方形.即可求出H的坐标;
(3)①先待定系数法求直线AO解析式为y=3x,再由△AEG的面积与△OFG的面积相等可得:EF∥AO,即可求直线l2的解析式;
②存在,由S△PBC=S△OBC可知:点P在经过点O或H平行于直线l1:y=-x+4的直线上,易求得点P的坐标为P(-1,1)或P(1,7).
解:(1)将、点代入得,解得:
直线的解析式为:;
将代入中,得,
双曲线的解析式为:.
(2)如图1中,
在中,令,得:
是等腰直角三角形,
由翻折得:
,
是正方形.
.
(3)如图2,连接,
①、.设直线解析式为,,
直线解析式为,
直线的解析式为:;
②存在,点坐标为:或.
解方程组得:,;
;
,
点在经过点或平行于直线的直线上,
易得:或
分别解方程组或得:或
点的坐标为或.
练习册系列答案
相关题目