题目内容
【题目】如图1,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,,,过点的直线交矩形的边于点,且点不与点、重合,过点作,交轴于点,交轴于点.
(1)若为等腰直角三角形.
①求直线的函数解析式;
②在轴上另有一点的坐标为,请在直线和轴上分别找一点、,使 的周长最小,并求出此时点的坐标和周长的最小值.
(2)如图2,过点作交轴于点,若以、、、为顶点的四边形是平行四边形,求直线的解析式.
【答案】(1)①直线解析式, ②N(0,),周长的最小值为;(2).
【解析】
(1)①利用矩形的性质确定A、B、C点的坐标,再利用等腰三角的性质确定,所以,确定P点的坐标,再根据A点的坐标确定确定直线AP的函数表达式. ②作G点关于y轴对称点G'(-2,0),作点G关于直线AP对称点G'(3,1)
连接G'G'交y轴于N,交直线AP于M,此时ΔGMN周长的最小.(2)过P作PM⊥AD于M,先根据等腰三角形三线合一的性质证明DM=MA ,再根据角角边定理证明ΔODE≌ΔMDP,根据全等三角形的性质求出点P、D的坐标,代入直线解析式得k=2,b=-2,所以直线PE的解析式为y=2x-2.
(1)①∵矩形,
∴,
∵为等腰直角三角形
∴
∵
∴
∵
∴
∴
∴
设直线解析式,过点,点
∴ ∴
∴直线解析式
②作点关于轴对称点,作点关于直线对称点
连接交轴于,交直线于,此时周长的最小.
∵
∴直线解析式
当时,,∴
∵
∴周长的最小值为
(2)如图:作于
∵ ∴且
∴,且 ∴
∵四边形是平行四边形 ∴
又∵
∴
∴ ∴
∵ ∴
∴
设直线的解析式
∴
∴直线解析式
【题目】某市水果批发部门欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。其它主要参考数据如下:
运输工具 | 途中平均速度(千米/时) | 运费(元/千米) | 装卸费用(元) |
火车 | 100 | 15 | 2000 |
汽车 | 80 | 20 | 900 |
(1)如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.
(2)如果A市与某市之间的距离为S千米,且知道火车与汽车在路上耽误的时间分别为2小时和3.1小时,你若是某市水果批发部门的经理,要将这种水果从A市运往本市销售。你将选择哪种运输方式比较合算呢?