题目内容
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 . 上述说法正确的是( )
A.①②③④
B.③④
C.①③④
D.①②
【答案】A
【解析】解:∵二次函数的图象开口向下, ∴a<0,
∵二次函数的图象交y轴的正半轴于一点,
∴c>0,
∵对称轴是直线x= ,
∴﹣ = ,
∴b=﹣a>0,
∴abc<0.
故①正确;
∵由①中知b=﹣a,
∴a+b=0,
故②正确;
由对称轴为x= ,点(2,0)的对称点是(﹣1,0),
∴当x=﹣1时,y=0,即a﹣b+c=0.
故③正确;
∵(0,y1)关于直线x= 的对称点的坐标是(1,y1),
∴y1=y2 .
故④正确;
综上所述,正确的结论是①②③④.
故选:A.
【考点精析】关于本题考查的二次函数图象以及系数a、b、c的关系,需要了解二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)才能得出正确答案.
练习册系列答案
相关题目