题目内容
【题目】在中,,是的中点,是的中点,过点作交的延长线于点.
(1)求证:;
(2)证明:四边形是菱形;
(3)若,,直接写出菱形的面积.
【答案】(1)见解析;(2)见解析;(3)10
【解析】
(1)根据AAS证AEF≌DEB;
(2)利用(1)中全等三角形的对应边相等得到AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是菱形,由“直角三角形斜边的中线等于斜边的一半”得到AD=DC,从而得出结论;
(3)由直角三角形ABC与菱形有相同的高,根据等积变形求出这个高,代入菱形面积公式可求出结论.
(1)证明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中点,D是BC的中点,
∴AE=DE,BD=CD,
在AFE和DBE中,
,
∴AFE≌DBE(AAS);
(2)证明:由(1)知,AFE≌DBE,
则AF=DB.
∵DB=DC,
∴AF=CD.
∵AF∥BC,
∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=DC=BC,
∴四边形ADCF是菱形;
(3)解:连接DF,
∵AF∥BD,AF=BD,
∴四边形ABDF是平行四边形,
∴DF=AB=5,
∵四边形ADCF是菱形,
∴S菱形ADCF=ACDF
=×4×5
=10.
【题目】《郑州市城市生活垃圾分类管理办法》于2019年12月起施行,某社区要投放两种垃圾桶,负责人小李调查发现:
购买数量少于个 | 购买数量不少于个 | |
原价销售 | 以原价的折销售 | |
原价销售 | 以原价的折销售 |
若购买种垃圾桶个,种垃圾桶个,则共需要付款元;若购买种垃圾桶个,种垃圾桶个,则共需付款元.
(1)求两种垃圾桶的单价各为多少元?
(2)若需要购买两种垃圾桶共个,且种垃圾桶不多于种垃圾桶数量的,如何购买使花费最少?最少费用为多少元?请说明理由.
【题目】在学习《用频率估计概率》这一节课后,数学兴趣小组设计了摸球试验:在一个不透明的盒子里装有质地大小都相同的红球和黑球共个,将球搅匀后从中随机摸出一个记下颜色,放回,再重复进行下一次试验,下表是他们整理得到的试验数据:
摸球的次数 | ||||||
摸到红球的次数 | ||||||
摸到红球的频率 |
(1)试估计:盒子中有红球 个;
(2)若从盒子中一次性摸出两个球,用画树状图或列表的方法求出一次性摸出的两个球都是红球的概率.