题目内容
【题目】如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)点P是抛物线上的动点,且满足S△PAO=2S△PCO,求出P点的坐标;
(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.
【答案】(1)y=﹣x2﹣2x+3;(2)点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3)
【解析】
(1)由待定系数法可求解析式;
(2)求出点C坐标,可得OA=OC=3,由面积关系列出方程可求解;
(3)分两种情况讨论,利用平行四边形的性质可求解.
解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,
∴,
解得:,
∴抛物线的解析式为:y=﹣x2﹣2x+3;
(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,
∴点C(0,3)
∴OA=OC=3,
设点P(x,﹣x2﹣2x+3)
∵S△PAO=2S△PCO,
∴×3×|﹣x2﹣2x+3|=2××3×|x|,
∴x=±或x=﹣2±,
∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);
(3)若BC为边,且四边形BCFE是平行四边形,
∴CF∥BE,
∴点F与点C纵坐标相等,
∴3=﹣x2﹣2x+3,
∴x1=﹣2,x2=0,
∴点F(﹣2,3)
若BC为边,且四边形BCEF是平行四边形,
∴BE与CF互相平分,
∵BE中点纵坐标为0,且点C纵坐标为3,
∴点F的纵坐标为﹣3,
∴﹣3=﹣x2﹣2x+3
∴x=﹣1±,
∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);
若BC为对角线,则四边形BECF是平行四边形,
∴BC与EF互相平分,
∵BC中点纵坐标为,且点E的纵坐标为0,
∴点F的纵坐标为3,
∴点F(﹣2,3),
综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).
【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:
型号 | 甲 | 乙 |
每台每小时分拣快递件数(件) | 1000 | 800 |
每台价格(万元) | 5 | 3 |
该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件
(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;
(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?
【题目】某品牌电脑销售公司有营销员14人,销售部为制定营销人员月销售电脑定额,统计了这14人某月的销售量如下(单位:台):
销售量 | 200 | 170 | 130 | 80 | 50 | 40 |
人数 | 1 | 1 | 2 | 5 | 3 | 2 |
(1)该公司营销员销售该品牌电脑的月销售平均数是 台,中位数是 台,众数是 台.
(2)销售部经理把每位营销员月销售量定为90台,你认为是否合理?说明理由.