题目内容
【题目】如图,点、、、分别是四边形边、、、的中点,则下列说法:
①若,则四边形为矩形;
②若,则四边形为菱形;
③若四边形是平行四边形,则与互相垂直平分;
④若四边形是正方形,则与互相垂直且相等.
其中正确的个数是( )
A.1B.2C.3D.4
【答案】A
【解析】
根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形、菱形、正方形的判定定理判断即可.
解:∵E、F分别是边AB、BC的中点,
∴EF∥AC,EF=AC,
同理可知,HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,
若AC=BD,则四边形EFGH是菱形,故①说法错误;
若AC⊥BD,则四边形EFGH是矩形,故②说法错误;
若四边形是平行四边形,AC与BD不一定互相垂直平分,故③说法错误;
若四边形是正方形,AC与BD互相垂直且相等,故④说法正确;
故选:A.
【题目】某学校在开展“节约每一滴水”的活动中,从七年级的100名同学中选出20名同学汇报了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是正整数)整理如下表:
节水量x/t | 0.5≤x<1.5 | 1.5≤x<2.5 | 2.5≤x<3.5 | 3.5≤x<4.5 |
人数 | 6 | 4 | 8 | 2 |
请你估计这100名同学的家庭一个月节约用水的总量大约是( )
A.180tB.300tC.230tD.250t
【题目】养牛场的李大叔分三次购进若干头大牛和小牛.其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如下表:
(1)李大叔以折扣价购买大牛和小牛是第 次;是打 折.
(2)用解方程(组)的方法求大牛和小牛的原价.
大牛(头) | 小牛(头) | 总价(元) | |
第一次 | 4 | 3 | 9900 |
第二次 | 2 | 6 | 9000 |
第三次 | 6 | 9 | 13230 |
【题目】某自行车厂计划每天生产辆自行车,但由于各种原因,实际每天生产量与计划生产量相比有所差异,下表是该厂某一周的实际生产情况(以计划产量为标准,超产记为正数,不足记为负数.单位:辆):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
与标准产量的差 |
()根据表格,这一周该厂实际生产自行车多少辆?
()若该厂实行“每日计件工资制”,每生产一辆自行车可得元,若超额完成任务,则超出部分每辆额外奖励元;若未完成任务,则每少生产一辆扣元,那么该厂工人这一周的工资总额是多少元?
()若将()中的“每日计件工资制”改为“每周计件工资制”,其他条件不变,在此方式下该厂工人一周的工资总额与“每日计件工资制”相比是减少还是增加了?减少或增加了多少?