题目内容
【题目】如图,直线l1:y1=﹣x+2与x轴,y轴分别交于A,B两点,点P(m,3)为直线l1上一点,另一直线l2:y2=x+b过点P.
(1)求点P坐标和b的值;
(2)若点C是直线l2与x轴的交点,动点Q从点C开始以每秒1个单位的速度向x轴正方向移动.设点Q的运动时间为t秒;
①请写出当点Q在运动过程中,△APQ的面积S与t的函数关系式;
②直接写出当t为何值时△APQ的面积等于4.5,并写出此时点Q的坐标.
【答案】(1)P的坐标为(﹣1,3),b=;(2)①S=(0<t<9)或S=(t>9);②Q的坐标为(﹣1,0)或(5,0).
【解析】
(1)把P(m,3)的坐标代入直线l1上的解析式即可求得P的坐标,然后根据待定系数法即可求得b;
(2)根据直线l2的解析式得出C的坐标,①根据题意得出AQ=9﹣t,然后根据S=AQ|yP|即可求得△APQ的面积S与t的函数关系式;②通过解方程﹣t+=4.5或t﹣=4.5,求得t的值,即可求得Q的坐标.
解:(1)∵点P(m,3)为直线l1上一点,
∴3=﹣m+2,解得m=﹣1,
∴点P的坐标为(﹣1,3),
把点P的坐标代入y2=x+b得,3=×(﹣1)+b,
解得b=;
(2)∵直线l2的解析式为y=x+,
∴C点的坐标为(﹣7,0),
①由直线l1:y1=﹣x+2可知A(2,0),
∴当Q在A、C之间时,AQ=2+7﹣t=9﹣t(0<t<9),
∴S=AQ|yP|=×(9﹣t)×3=﹣t;
当Q在A的右边时,AQ=t﹣9(t>9),
∴S=AQ|yP|=×(t﹣9)×3=t﹣;
即△APQ的面积S与t的函数关系式为S=﹣t+(0<t<9)或S=t﹣(t>9);
②∵S=4.5,
∴﹣t+=4.5或t﹣=4.5
解得t=6或t=12,
∴Q的坐标为(﹣1,0)或(5,0).