题目内容
【题目】如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图1,若BD=BA,求证:△ABE≌△DBE;
(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AFAC.
【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.
【解析】
试题分析:(1)根据全等三角形的判定定理即可得到结论;
(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到,求得GM=2MC;
②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到,等量代换得到,于是得到结论.
试题解析:(1)在Rt△ABE和Rt△DBE中,∵BA=BD,BE=BE,∴△ABE≌△DBE;
(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴,∴GM=2MC;
②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°﹣∠BAE,∴△ACN∽△BAF,∴,∵AB=AG,∴,∴2CNAG=AFAC,∴AG2=AFAC.
练习册系列答案
相关题目