题目内容
【题目】如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.
(问题发现)
(1)如图(2),当n=1时,BM与PD的数量关系为 ,CN与PD的数量关系为 .
(类比探究)
(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.
(拓展延伸)
(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMVP旋转至C,N,M三点共线时,请直接写出线段CN的长
【答案】(1)BM=PD; (2)见解析 (3)或
【解析】
(1)当n=1时四边形ABCD和四边形AMNP均为正方形,所以AM=AP,AB=AD,从而得出BM=PD,再根据得出,从而得出结论;
(2)连接AC,证明,即可求解;
(3)分两种情况考虑:通过证得出对应边数量关系,设,则解直角三角形AQM,从而计算出QM的长度,从而求算CN.
(1)解:∵当n=1时四边形ABCD和四边形AMNP均为正方形
∴AM=AP,AB=AD
∴BM=PD
又∵
∴
∴
(2)CN与PD之间的数量关系发生变化,.
理由:连接AC,如图:
在矩形ABCD和矩形AMNP中,
∵.AD=2AB, AP=2AM,
∴,
∴.
易得
∴△ANC∽△APD
∴
∴
(3)分两种情况考虑:
①如图:
∵已知AD=4,AP=2,
∴AB=2,AM=PN=1
由图知:
∴
设,则 ,在直角三角形AQM中:
解得: (舍)
∴ ,
∴
∴
②如图:
由①可得:,,MN=2
∴
【题目】某体育用品商店购进了足球和排球共20个,一共花了1360元,进价和售价如表:
足球 | 排球 | |
进价(元/个) | 80 | 50 |
售价(元/个) | 95 | 60 |
(l)购进足球和排球各多少个?
(2)全部销售完后商店共获利润多少元?