题目内容
【题目】一副三角板如图1摆放,∠C=∠DFE=90,∠B=30,∠E=45,点F在BC上,点A在DF上,且AF平分∠CAB,现将三角板DFE绕点F顺时针旋转(当点D落在射线FB上时停止旋转).
(1)当∠AFD=_ __时,DF∥AC;当∠AFD=__ _时,DF⊥AB;
(2)在旋转过程中,DF与AB的交点记为P,如图2,若AFP有两个内角相等,求∠APD的度数;
(3)当边DE与边AB、BC分别交于点M、N时,如图3,若∠AFM=2∠BMN,比较∠FMN与∠FNM的大小,并说明理由。
【答案】(1)30;60(2) 60或105或150(3)∠FMN=∠FNM
【解析】分析:(1)当∠AFD=30°时,AC∥DF,依据角平分线的定义可先求得∠CAF=∠FAB=30°,由内错角相等,两直线平行,可证明AC∥DF,;当∠AFD=60°时,DF⊥AB,由三角形的内角和定理证明即可;
(2)分为∠FAP=∠AFP,∠AFP=∠APF,∠APF=∠FAP三种情况求解即可;
(3)先依据三角形外角的性质证明∠FNM=30°+∠BMN,接下来再依据三角形外角的性质以及∠AFM和∠BMN的关系可证明∠FMN=30°+∠BMN,从而可得到∠FNM与∠FMN的关系.
详解:(1)如图1所示:
当∠AFD=30时,AC∥DF.
理由:∵∠CAB=60°,AF平分∠CAB,∴∠CAF=30°.
∵∠AFD=30°,∴∠CAF=∠AFD,∴AC∥DF.
如图2所示:当∠AFD=60°时,DF⊥AB.
∵∠CAB=60°,AF平分∠CAB,∴∠AFG=30°.
∵∠AFD=60°,∴∠FGB=90°,∴DF⊥AB.
故答案为:30;60.
(2)∵∠CAB=60°,AF平分∠CAB,∴∠FAP=30°.
当如图3所示:
当∠FAP=∠AFP=30°时,∠APD=∠FAP+∠AFP=30°+30°=60°;
如图4所示:
当∠AFP=∠APF时.
∵∠FAP=30°,∠AFP=∠APF,∴∠AFP=∠APF=×(180°﹣30°)=×150°=75°,∴∠APD=∠FAP+∠AFP=30°+75°=105°;
如图5所示:
如图5所示:当∠APF=∠FAP=30°时.
∠APD=180°﹣30°=150°.
综上所述:∠APD的度数为60°或105°或150°.
(3)∠FMN=∠FNM.
理由:如图6所示:
∵∠FNM是△BMN的一个外角,∴∠FNM=∠B+∠BMN.
∵∠B=30°,∴∠FNM=∠B+∠BMN=30°+∠BMN.
∵∠BMF是△AFM的一个外角,∴∠MBF=∠MAF+∠AFM,即∠BMN+∠FMN=∠MAF+∠AFM.
又∵∠MAF=30°,∠AFM=2∠BMN,∴∠BMN+∠FMN=30°+2∠BMN,∴∠FMN=30°+∠BMN,∴∠FNM=∠FMN.