题目内容

【题目】△ADE中,AE=AD,∠EAD=90°.

(1)如图(1),若EC、DB分别平分∠AED、∠ADE,交AD、AE于点C、B,连接BC.请你判断AB、AC是否相等,并说明理由;

(2)△ADE的位置保持不变,将(1)中的△ABC绕点A逆时针旋转至图

(2)的位置,CD、BE相交于O,请你判断线段BE与CD的位置关系及数量关系,并说明理由;

(3)在(2)的条件下,若CD=6,试求四边形CEDB的面积.

【答案】(1)理由见解析;(2)理由见解析;(3)18.

【解析】分析:(1)由已知得∠AEC=∠ADB,AE=AD,∠A=∠A,利用“ASA”证明△AEC≌△ADB即可;(2)BE=CDBE⊥CD.由旋转的性质可证△AEB≌△ADC,从而可得BE=CD,再利用角的相等关系,互余关系证明BE⊥CD;(3)由于BE⊥CD,BE=CD=6,当四边形的对角线互相垂直时,四边形的面积等于对角线积的一半.

本题解析:

(1)AB=AC.

理由如下:

∵EC、DB分别平分∠AED、∠ADE

∴∠AEC=∠AED,∠ADB=∠ADE

∵∠AED=∠ADE

∴∠AEC=∠ADB

在△AEC和△ADB中,

∠AEC=∠ADB,AE=AD,∠A=∠A

∴△AEC≌△ADB

∴AB=AC;

(2)BE=CD且BE⊥CD.

理由如下:

∵∠EAD=∠BAC

∴∠EAB=∠DAC

在△AEB和△ADC中,

∴△AEB≌△ADC(SAS)

∴EB=CD

∴∠AEB=∠ADC

∵∠AEB+∠DEB+∠ADE=90°

∴∠ADC+∠DEB+∠ADE=90°

∵∠ADC+∠DEB+∠ADE+∠DOE=180°

∴∠DOE=90°

∴BE⊥CD;

(3)四边形CEDB的面积=×BE×CD= =18.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网