题目内容
【题目】如图,线段AB,AC是两条绕点A可以自由旋转的线段(但点A,B,C始终不在同一条直线上),已知AB=5,AC=7,点D,E分别是AB,BC的中点,则四边形BEFD面积的最大值是______.
【答案】
【解析】
根据题意得DE∥AC,2AC=DE,可得AF=2DF,可得S△DEF=S△ADE,由D,E为中点可得S△ADB=S△ABC,S△ADE=S△ADEB=S△ABD,可求出四边形BEFD的面积和三角形ABC面积关系,可得四边形BEFD面积的最大值.
解:连接DE
∵D,E是中点
∴DE∥AC,DE=AC
∴
∴AF=2DF
∵D,E是中点
∴S△ACD=S△ADB=S△ABC
S△ADE=S△DEB=S△ADB=S△ABC
∵AF=2DF
∴S△EDF=S△ADE=S△ABC
∴S四边形DBEF=S△EDF+S△DEB=S△ABC
∴当△ABC面积最大,四边形BEFD面积的最大.
∴当AB⊥AC时,△ABC最大面积为.
∴四边形BEFD面积的最大值为.
故答案为:
【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
使用次数 | 0 | 1 | 2 | 3 | 4 | 5(含5次以上) |
累计车费 | 0 | 0.5 | 0.9 | 1.5 |
同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
使用次数 | 0 | 1 | 2 | 3 | 4 | 5 |
人数 | 5 | 15 | 10 | 30 | 25 | 15 |
(Ⅰ)写出的值;
(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.