题目内容
【题目】如图,某日的钱塘江观潮信息如表:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离(千米)与时间(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数(,是常数)刻画.
(1)求的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度).
【答案】(1)m=30;0.4千米/分钟;(2)5分钟;(3)小红与潮头相遇到潮头离她1.8千米外共需要26分钟.
【解析】
试题分析:(1)由题意可知:经过30分钟后到达乙地,从而可知m=30,由于甲地到乙地是匀速运动,所以利用路程除以时间即可求出速度;
(2)由于潮头的速度为0.4千米/分钟,所以到11:59时,潮头已前进19×0.4=7.6千米,设小红出发x分钟,根据题意列出方程即可求出x的值,
(3)先求出s的解析式,根据潮水加速阶段的关系式,求出潮头的速度达到单车最高速度0.48千米/分钟时所对应的时间t,从而可知潮头与乙地之间的距离s,设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),当t=35时,s1=s= ,从而可求出h的值,最后潮头与小红相距1.8千米时,即s-s1=1.8,从而可求出t的值,由于小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,共需要时间为6+50-30=26分钟,
试题解析:(1)由题意可知:m=30;
∴B(30,0),
潮头从甲地到乙地的速度为:=0.4千米/分钟;
(2)∵潮头的速度为0.4千米/分钟,
∴到11:59时,潮头已前进19×0.4=7.6千米,
设小红出发x分钟与潮头相遇,
∴0.4x+0.48x=12-7.6,
∴x=5
∴小红5分钟与潮头相遇,
(3)把(30,0),C(55,15)代入s=t2+bt+c,
解得:b=-,c=-,
∴s=t2-t-
∵v0=0.4,
∴v=(t-30)+,
当潮头的速度达到单车最高速度0.48千米/分钟,
此时v=0.48,
∴0.48=(t-30)+,
∴t=35,
当t=35时,
s=t2-t-=,
∴从t=35分(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,当小红仍以0.48千米/分的速度匀速追赶潮头.
设她离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),
当t=35时,s1=s=,代入可得:h=-,
∴s1=t-
最后潮头与小红相距1.8千米时,即s-s1=1.8,
∴t2-t--t+=1.8
解得:t=50或t=20(不符合题意,舍去),
∴t=50,
小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,
∴共需要时间为6+50-30=26分钟,
∴小红与潮头相遇到潮头离她1.8千米外共需要26分钟.