题目内容
【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:
请你根据统计图回答下列问题:
(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;
(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?
(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?
(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.
【答案】(1)28%,补图见解析;(2)60名;(3)144°;(4).
【解析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;
(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;
(3)用360°乘以喜欢篮球人数所占的百分比即可;
(4)画树状图可得所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.
(1)调查的总人数为8÷16%=50(人),
喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),
所以喜欢乒乓球的学生所占的百分比=×100%=28%,
补全条形统计图如下:
(2)500×12%=60,
所以估计全校500名学生中最喜欢“排球”项目的有60名;
(3),篮球”部分所对应的圆心角=360×40%=144°;
(4)画树状图为:
共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,
所以抽取的两人恰好是甲和乙的概率=.
练习册系列答案
相关题目