题目内容

【题目】如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足 +(b2﹣16)2=0.

(1)求A、B两点的坐标,∠OAB的度数;
(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG的中线,且SBHE=3,
①求点E到BH的距离;
②求点G的坐标;
(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值.

【答案】
(1)解:∵ +(b2﹣16)2=0,

∴a﹣b=0,b2﹣16=0,

解得:b=4,a=4或b=﹣4,a=﹣4,

∵A点在x轴正半轴,B点在y轴正半轴上,

∴b=4,a=4,

∴A(4,0),B(0,4),

∴OA=OB=4,

∴∠OAB=45°


(2)解:①如图1,作EF⊥y轴于F,

∵B(0,4),H(0,1),

∴BH=OB﹣OH=4﹣1=3,

∵OA=OB=4,

∴△OAB为等腰直角三角形,

∴∠OBA=∠OAB=45°,

∴△BFE为等腰直角三角形,

∴BF=EF=2,

∴OF=OB﹣BF=4﹣1=3,

∴E(2,3),

∴E(2,3)为GH的中点,

∵SBHE=3,

BH×EF=3,即 ×3×EF=3,

∴EF=2,

故点E到BH的距离为2.

②设G(m,n),则

∵BE为△BHG的中线,

解得m=4,n=5,

∴G点坐标为(4,5)


(3)解:如图2,过点B作BK⊥OC,交MN于点K,则∠KBO=∠DOA,

∵MN⊥AD,

∴∠DON+∠NOA=90°,

∴∠3+∠NOA=90°,

∵∠NOA+∠1=90°,

∴∠3=∠1,

在△KOB和△OAD中,

∴△KOB≌△OAD(ASA),

∴KB=OD,∠2=∠7,

∵BC=OD,

∴KB=BC,

∵OB=OA,∠BOA=90°,

∴∠OBA=45°,

∴∠9=∠8=45°,

在△MKB和△MCB中,

∴△MKB≌△MCB(SAS),

∴∠6=∠5,

∵∠7+∠6=180°,

∴∠2+∠5=180°,即∠ADO+∠BCM=180°.


【解析】(1)根据非负数的性质,得出关于a、b的方程组,求得a、b即可得到A、B两点的坐标,最后利用等腰三角形的性质得出∠OAB的度数;(2)作EF⊥y轴于F,构造等腰直角三角形BEF,进而求出E点坐标,利用△BHE的面积即可得到点E到BH的距离;设G(m,n),根据BE为△BHG的中线,求得点G坐标即可;(3)过点B作BK⊥OC,交MN于点K,然后证明△OBK≌△OAD、△MKB≌△MCB,从而可证明∠ADO+∠BCM=180°.
【考点精析】掌握等腰直角三角形和三角形的面积是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;三角形的面积=1/2×底×高.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网