题目内容
【题目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.
(1)填空:∠OBC= °;
(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;
(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?
【答案】(1)60;(2);(3).
【解析】
(1)只要证明△OBC是等边三角形即可;
(2)求出△AOC的面积,利用三角形的面积公式计算即可;
(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.
③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.
(1)由旋转性质可知:OB=OC,∠BOC=60°,
∴△OBC是等边三角形,
∴∠OBC=60°,
故答案为:60;
(2)∵OB=4,∠ABO=30°,
∴OA=OB=2,AB=OA=2,
∴S△AOC=OAAB=×2×2=2,
∵△BOC是等边三角形,
∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,
∴AC==2,
∴OP=;
(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,如图,
则NE=ONsin60°=x,
∴S△OMN=OMNE=×1.5x×x,
∴y=x2,
∴x=时,y有最大值,最大值=;
②当<x≤4时,M在BC上运动,N在OB上运动,
如图,作MH⊥OB于H.则BM=8﹣1.5x,MH=BMsin60°=(8﹣1.5x),
∴y=×ON×MH=﹣x2+2x,
当x=时,y取最大值,y<;
③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,如图,
MN=12﹣2.5x,OG=AB=2,
∴y=MNOG=12﹣x,
当x=4时,y有最大值,最大值=2,
综上所述,y有最大值,最大值为.
【题目】随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”很多农产品也改变了原来的销售模式,实行了网上销售,刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负单位:斤);
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
与计划量的差值 |
(1)根据记录的数据可知前三天共卖出 斤;
(2)根据记录的数据可知该周销售量最多的一天比销售量最少的一天多销售 斤;
(3)本周实际销售总量是否达到了计划数量?试通过计算说明理由.
(4)若冬枣每斤按元出售,每斤冬枣的运费平均元(运费由小明承担),那么小明本周一共收入多少元?