题目内容

【题目】在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为 :1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.
(1)如图①,求证:BA=BP;

(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求 的值;

(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.

【答案】
(1)

证明:如图①中,设AD=BC=a,则AB=CD= a.

∵四边形ABCD是矩形,

∴∠C=90°,

∵PC=AD=BC=a,

∴PB= = a,

∴BA=BP


(2)

解:如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.

设AD=BC=QD=a,则AB=CD= a,

∴CQ=CQ′= a﹣a,

∵CQ′//AB,

= = =


(3)

证明:如图③中,作TH//AB交NM于H,交BC于K.

由(2)可知,AD=BC=1,AB=CD= ,DP=CF= ﹣1,

∵S△MNT= THCK+ THBK= HT(KC+KB)= HTBC= HT,

∵TH//AB//FM,TF=TB,

∴HM=HN,

∴HT= (FM+BN),

∵BN=PM,

∴HT= (FM+PM)= PF= (1+ ﹣1)=

∴S△MNT= HT= =定值


【解析】(1)如图①中,设AD=BC=a,则AB=CD= a.通过计算得出AB=BP= a,由此即可证明;(2)如图②中,作Q关于BC的对称点Q′,连接AQ′交BC于G,此时△AQG的周长最小.设AD=BC=QD=a,则AB=CD= a,可得CQ=CQ′= a﹣a,由CQ′//AB,推出 = = = ;(3)如图③中,作TH//AB交NM于H,交BC于K.由S△MNT= THCK+ THBK= HT(KC+KB)= HTBC= HT,利用梯形的中位线定理求出HT即可解决问题;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网