题目内容
【题目】如图,四边形ABCD为平行四边形,F是CD的中点,连接AF并延长与BC的延长线交于点E.求证:BC=CE.
【答案】证明:如图,∵四边形ABCD是平行四边形, ∴AD=BC,AD∥BC,
∴∠DAF=∠E,∠ADF=∠ECF,
又∵F是CD的中点,即DF=CF,
∴△ADF≌△ECF,
∴AD=CE,
∴BC=CE.
【解析】根据平行四边形的对边平行且相等可得AD=BC,AD∥BC,根据两直线平行,内错角相等可得∠DAF=∠E,∠ADF=∠ECF,根据线段中点的定义可得DF=CF,然后利用“角角边”证明△ADF≌△ECF,根据全等三角形对应边相等可得AD=CE,从而得证.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.