题目内容

【题目】如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.
(1)求证:AC是⊙O的切线;
(2)若sinC= ,AC=6,求⊙O的直径.

【答案】
(1)证明:∵AB=AC,AD=DC,

∴∠C=∠B,∠1=∠C,

∴∠1=∠B,

又∵∠E=∠B,

∴∠1=∠E,

∵AE是⊙O的直径,

∴∠ADE=90°,

∴∠E+∠EAD=90°,

∴∠1+∠EAD=90°,即∠EAC=90°,

∴AE⊥AC,

∴AC是⊙O的切线


(2)解:过点D作DF⊥AC于点F,如图,

∵DA=DC,

∴CF= AC=3,

在Rt△CDF中,∵sinC= =

设DF=4x,DC=5x,

∴CF= =3x,

∴3x=3,解得x=1,

∴DC=5,

∴AD=5,

∵∠ADE=∠DFC=90°,∠E=∠C,

∴△ADE∽△DFC,

= ,即 = ,解得AE=

即⊙O的直径为


【解析】(1)根据等腰三角形的性质,由AB=AC,AD=DC得∠C=∠B,∠1=∠C,则∠1=∠B,根据圆周角定理得∠E=∠B,∠ADE=90°,所以∠1+∠EAD=90°,然后根据切线的判定定理即可得到AC是⊙O的切线;(2)过点D作DF⊥AC于点F,如图,根据等腰三角形的性质得CF= AC=3,在Rt△CDF中,利用正弦定义得sinC= = ,则设DF=4x,DC=5x,利用勾股定理得CF=3x,所以3x=3,解得x=1,于是得到DC=AD=5,然后证明△ADE∽△DFC,再利用相似比可计算AE即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网