题目内容

【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,-3),点P是直线BC下方抛物线上的一个动点.

(1)求二次函数解析式;

(2)连接PO,PC,并将POC沿y轴对折,得到四边形.是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;

(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

【答案】解:(1)将B、C两点的坐标代入,得

, 解得

二次函数的解析式为

(2)存在。如图1,假设抛物线上存在点P,使四边形为菱形,连接交CO于点E

四边形为菱形, KPC=PO,且PECO

OE=EC=,即P点的纵坐标为

(不合题意,舍去)

存在这样的点,此时P点的坐标为(

(3)如图2,连接PO,作PMx于M,PNy于N设P点坐标为(x,),

=0,得点A坐标为(-1,0)

AO=1,OC=3, OB=3,PM=,PN=x

S四边形ABPC=++

=AO·OC+OB·PM+OC·PN

=×1×3+×3×()+×3×x

==

当x=时,四边形ABPC的面积最大.此时P点坐标为(),四边形ABPC的最大面积为

【解析】

试题(1)直接把B(3,0)、C(0,-3)代入可得到关于b、c的方程组,解方程组求得b,c,则从而求得二次函数的解析式。

(2)假设抛物线上存在点P,使四边形为菱形,连接交CO于点E,则PO=PC,根据翻折的性质得OP′=OP,CP′=CP,易得四边形POP′C为菱形,又E点坐标为(0, ),则点P的纵坐标为,把y=

代入可求出对应x的值,然后确定满足条件的P点坐标。

(3)由S四边形ABPC=++求出S四边形ABPC关于P点横坐标的函数表达式,应用二次函数的最值原理求解。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网