题目内容

【题目】如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作O的切线交边BC于N.

(1)求证:△ODM∽△MCN;

(2)设DM=x,求OA的长(用含x的代数式表示);

(3)在点O的运动过程中,设CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?

【答案】1证明见解析20x8)(3在点O的运动过程中,CMN的周长P始终为16,是一个定值

【解析】试题分析:(1)依题意可得∠OMC=∠MNC,然后可证得△ODM∽△MCN.
(2)设DM=x,OA=OM=R,OD=AD-OA=8-R,根据勾股定理求出OA的值.
(3)由1可求证△ODM∽△MCN,利用线段比求出CN,MN的值.然后可求出△CMN的周长等于CM+CN+MN,把各个线段消去代入可求出周长.

试题解析:

(1)证明:MN切O于点M,

∴∠OMN=90°;

∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°;

∴∠OMD=∠MNC;

∵∠D=∠C=90°;

∴△ODM∽△MCN,

(2)在RtODM中,DM=x,设OA=OM=R;

OD=AD﹣OA=8﹣R,

由勾股定理得:(8﹣R)2+x2=R2

∴64﹣16R+R2+x2=R2

OA=R= ;

(3)∵CM=CD﹣DM=8﹣x,

OD=8-R=8-

且有△ODM∽△MCN,

代入得到CN=

同理

代入得到MN=

∴△CMN的周长为P=CM+CN+MN=(8-x)+ =16.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网