题目内容
【题目】如图,直线y=与x轴y轴分别交于A、C两点,以AC为对角线作第一个矩形ABCO,对角线交点为A1,再以CA1为对角线作第二个矩形A1B1CO1,对角线交点为A2,同法作第三个矩形A2B2CO2对角线交点为A3,…以此类推,则第2019个矩形对角线交点A2019的坐标为_____.
【答案】
【解析】
根据矩形的性质,以及相似三角形的判定方法,可以证得:△AnCOn∽△ACO,相似比是,即可求得AnOn,OOn的长,进而得到An的坐标,据此可得点A2019的坐标.
解:在中,
令x=0,解得:y=2;
令y=0,解得:x=2,
则OC=2,OA=2.
∵A1是矩形ABCO的对角线的交点,O1A1∥OA,
∴△A1CO1∽△ACO,相似比是;
同理,△A2CO2∽△A1CO1,相似比是;
则△A2CO2∽△ACO,相似比是=()2,
同理:△AnCOn∽△ACO,相似比是()n.
∴,
∴AnOn=()nOA=()n×2=()n﹣1=,
COn=()n×OC=()n×2=()n﹣1=,
OOn=2﹣,
则点An的坐标为(,),
∴点A2019的坐标为(,).
故答案为(,).
【题目】某部门为了解工人的生产能力情况,进行了抽样调查.该部门随机抽取了20名工人某天每人加工零件的个数,数据如下:整理上面数据,得到条形统计图;样本数据的平均数、众数、中位数如表所示:
统计量 | 平均数 | 众数 | 中位数 |
数值 | 19.2 | m | n |
根据以上信息,解答下列问题:
(1)上表中m、n的值分别为 , ;
(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据 来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);
(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手若该部门有300名工人,试估计该部门生产能手的人数;
(4)现决定从小王、小张、小李、小刘中选两人参加业务能手比赛,直接写出恰好选中小张、小李两人的概率.