题目内容
【题目】如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.
【答案】AF=BF+EF,理由见试题解析.
【解析】
试题分析:根据正方形的性质,可得AB=AD,∠DAB=∠ABC=90°,根据余角的性质,可得∠ADE=∠BAF,根据全等三角形的判定与性质,可得BF与AE的关系,再根据等量代换,可得答案.
试题解析:线段AF、BF、EF三者之间的数量关系AF=BF+EF,理由如下:
∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵DE⊥AG于E,BF∥DE交AG于F,∴∠AED=∠DEF=∠AFB=90°,∴∠ADE+∠DAE=90°,∠DAE+∠BAF=90°,∴∠ADE=∠BAF,在△ABF和△DAE中,∵∠BAF=∠ADE,∠AFB=∠DEA,AB=AD,∴△ABF≌△DAE (AAS),∴BF=AE,∵AF=AE+EF,AF=BF+EF.
练习册系列答案
相关题目