题目内容
【题目】据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°.
(1)求B,C的距离.
(2)通过计算,判断此轿车是否超速.(tan31°≈0.6,tan50°≈1.2,结果精确到1m)
【答案】(1)则B,C的距离为20m;
(2)此轿车没有超速.
【解析】解:(1)在Rt△ABD中,AD=24m,∠B=31°,
∴tan31°=,即BD==40m,
在Rt△ACD中,AD=24m,∠ACD=50°,
∴tan50°=,即CD==20m,
∴BC=BD﹣CD=40﹣20=20m,
则B,C的距离为20m;
(2)根据题意得:20÷2=10m/s<15m/s,
则此轿车没有超速.
练习册系列答案
相关题目