题目内容
【题目】如图,在△ABC中,AB=5,AC=12,BC=13,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积S=__________.
【答案】30
【解析】∵△ABD,△ACE都是等边三角形,
∴∠DAB=∠EAC=60°,
∵∠BAC=105°,
∴∠DAE=135°,
∵△ABD和△FBC都是等边三角形,
∴∠DBF+∠FBA=∠ABC+∠ABF=60°,
∴∠DBF=∠ABC.
在△ABC与△DBF中,
,
∴△ABC≌△DBF(SAS),
∴AC=DF=AE=12,
同理可证△ABC≌△EFC,
∴AB=EF=AD=5,
∴四边形DAEF是平行四边形(两组对边分别相等的四边形是平行四边形).
∴∠FDA=180°∠DAE=30°,
∴SAEFD=AD(DFsin45°)=5×(12×)=30.
即四边形AEFD的面积是30,
故答案为:30.
点睛:本题综合考查了勾股定理得逆定理,平行四边形的判定与性质,全等三角形的判定与性质以及等边三角形的性质,综合性比较强,难度较大,有利于培养学生综合运用知识进行推理和计算的能力.
练习册系列答案
相关题目