题目内容

【题目】已知:在四边形ABCD中,ABC=∠ADC=90,MN分别是CDBC上的点

求作:点MN,使AMN的周长最小

作法:如图,

(1)延长AD,在AD的延长线上截取DA=DA

(2)延长AB,在AB的延长线上截取B A″=BA

(3)连接A′A″,分别交CDBC于点MN则点MN即为所求作的点

请回答:这种作法的依据是_____________

【答案】①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)

②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);

③两点之间线段最短.

【解析】分析分别作出点A关于CDBC的对称点A′,A″,连接AA″分别交CDBC于点MN此时△AMN周长最小

详解作图的依据是①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)

②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);

③两点之间线段最短.

故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)

②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);

③两点之间线段最短.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网