题目内容
【题目】如图,、是的切线,切点分别为、两点,点在上,如果,那么的度数是________.
【答案】
【解析】
连接OA,OB,由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠ACB的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.
连接OA,OB,如图所示:
∵PA、PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
∴∠OAP=∠OBP=90°,
又∵圆心角∠AOB与圆周角∠ACB都对弧AB,且∠ACB=70°,
∴∠AOB=2∠ACB=140°,
则∠P=360°-(90°+90°+140°)=40°.
故答案为:40°.
练习册系列答案
相关题目