题目内容
【题目】如图,在△ABC中,AB=AC,E在线段AC上,D在线段AB的延长线上,连DE交BC于F,过点E作EG⊥BC于G,若BD=CE,求证:FG=BF+CG.
【答案】证明见解析.
【解析】
可在BC上截取GH=GC,可得△EHC是等腰三角形,进而得出AB∥EH,再证△BDF≌△HEF(AAS),通过线段之间的转化即可得出结论.
在BC上截取GH=GC,连接EH,
∵EG⊥BC,GH=GC,
∴EH=EC,
∴∠EHC=∠C,
又AB=AC,
∴∠ABC=∠C,
∴∠EHC=∠ABC,
∴EH∥AB,
∴∠DBF=∠EHF,∠D=∠DEH,
又EH=EC=BD,
∴△BDF≌△HEF(AAS),
∴BF=FH,
∴FG=FH+HG=BF+GC.
练习册系列答案
相关题目