题目内容
【题目】在平面直角坐标系中,已知直线与双曲线的一个交点是.
(1)求的值;
(2)设点是双曲线上不同于的一点,直线与轴交于点.
①若,求的值;
②若,结合图象,直接写出的值.
【答案】(1).(2)①;②或.
【解析】
(1)由直线解析式求得A(2,1),然后代入双曲线y=中,即可求得k的值;
(2)①根据系数k的几何意义即可求得n的值,得到P的坐标,继而求得直线PA的解析式,代入B(b,0)即可求得b的值;②分两种情况讨论求得即可.
(1)∵直线y=x与双曲线y=的一个交点是A(2,a),
∴a=×2=1,
∴A(2,1),
∴k=2×1=2;
(2)①若m=1,则P(1,n),
∵点P(1,n)是双曲线y=上不同于A的一点,
∴n=k=2,
∴P(1,2),
∵A(2,1),
则直线PA的解析式为y=-x+3,
∵直线PA与x轴交于点B(b,0),
∴0=-b+3,
∴b=3;
②如图1,当P在第一象限时,
∵PB=2AB,A(2,1),
∴P点的纵坐标时2,
代入y=求得x=1,
∴P(1,2),
由①可知,此时b=3;
如图2,当P在第,三象限时,
∵PB=2AB,A(2,1),
∴P点的纵坐标时-2,
代入y=求得x=-1,
∴P(-1,-2),
∵A(2,1)
则直线PA的解析式为y=x-1,
∴b=1,
综上,b的值为3或1.
练习册系列答案
相关题目
【题目】抛物线y=ax2+bx+c上部分点的横坐标x和纵坐标y的对应值如下表,则下列说法中正确的有_______.(填序号)
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
y | … | -37 | -21 | -9 | -1 | 3 | 3 | … |
①当x>1时,y随x的增大而减小. ②抛物线的对称轴为直线x=-.
③当x=2时,y=-9. ④方程ax2+bx+c=0一个正数解满足1<<2.