题目内容

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

【答案】(1);(2)x>1;(3)P(﹣,0)或(,0)

【解析】

(1)求得A(1,3),把A(1,3)代入双曲线y=,可得yx之间的函数关系式;

(2)依据A(1,3),可得当x>0时,不等式x+b>的解集为x>1;

(3)分两种情况进行讨论,AP△ABC的面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P的坐标.

1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,

∴A(1,3),

A(1,3)代入双曲线y=,可得k=1×3=3,

∴yx之间的函数关系式为:y=

(2)∵A(1,3),

x>0时,不等式x+b>的解集为:x>1;

(3)y1=﹣x+4,令y=0,则x=4,

B的坐标为(4,0),

A(1,3)代入y2=x+b,可得3=+b,

∴b=

∴y2=x+

y2=0,则x=﹣3,即C(﹣3,0),

∴BC=7,

∵AP△ABC的面积分成1:3两部分,

∴CP=BC=,或BP=BC=

∴OP=3﹣=,或OP=4﹣=

∴P(﹣,0)或(,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网