题目内容
【题目】在平面直角坐标系xOy中,点A在直线l上,以A为圆心,OA为半径的圆与y轴的另一个交点为E.给出如下定义:若线段OE,⊙A和直线l上分别存在点B,点C和点D,使得四边形ABCD是矩形(点A,B,C,D顺时针排列),则称矩形ABCD为直线l的“位置矩形”.
例如,图中的矩形ABCD为直线l的“位置矩形”.
(1)若点A(-1,2),四边形ABCD为直线x=-1的“位置矩形”,则点D的坐标为 ;
(2)若点A(1,2),求直线y=kx+1(k≠0)的“位置矩形”的面积;
(3)若点A(1,-3),直线l的“位置矩形”面积的最大值为 ,此时点D的坐标为 .
【答案】(1)(-1,0);(2);(3)5、(3,-2)或(-1,-2).
【解析】
(1)只需根据新定义画出图形就可解决问题;
(2)过点A作AF⊥y轴于点F,连接AO、AC,如图2,根据点A(1,2)在直线y=kx+1上可求出k,设直线y=x+1与y轴相交于点G,易求出OG=1,∠FGA=45°,根据勾股定理可求出AG、AB、BC的值,从而可求出“位置矩形”ABCD面积;
(3)设“位置矩形”的一组邻边长分别为x、y,则有x2+y2=10.由(x-y)2=x2+y2-2xy=10-2xy≥0可得xy≤5,当且仅当x=y时,xy取最大值是5,此时“位置矩形”是正方形,然后分点D在第四象限(如图3)和第三象限(如图4)两种情况讨论,就可解决问题
(1)如图1,
点D的坐标为(-1,0).
故答案为(-1,0);
(2)过点A作AF⊥y轴于点F,连接AO、AC,如图2.
∵点A的坐标为(1,2),
∴AC=AO=,AF=1,OF=2.
∵点A(1,2)在直线y=kx+1上,
∴k+1=2,
解得k=1.
设直线y=x+1与y轴相交于点G,
当x=0时,y=1,点G(0,1),OG=1,
∴FG=OF-OG=2-1=1=AF,
∴∠FGA=45°,AG=.
在Rt△GAB中,AB=AGtan45°=.
在Rt△ABC中,BC=.
∴所求“位置矩形”ABCD面积为ABBC=;
(3)设“位置矩形”的一组邻边长分别为x、y,
则有x2+y2=AC2=AO2=12+32=10.
∵(x-y)2=x2+y2-2xy=10-2xy≥0,
∴xy≤5.
当且仅当x=y时,xy取最大值是5,此时“位置矩形”是正方形.
①当点D在第四象限时,如图3,
过点A作x轴的平行线,交y轴于点M,交过点D平行于y轴的直线于点N,
∵∠BAM+∠DAN=90°,∠BAM+∠ABM=90°,
∴∠ABM=∠DAN,
在RtAMB和Rt△DNA中,
,
∴RtAMB≌Rt△DNA,
则有AN=BM=2,DN=AM=1,
∴点D的坐标为(1+2,-3+1)即(3,-2).
②当点D在第三象限时,如图4,
过点A作x轴的平行线,交y轴于点N,交过点D平行于y轴的直线于点M,
同①的方法得:RtANB≌Rt△DMA,
则有DM=AN=1,AM=BN=2,
∴点D的坐标为(1-2,-3+1)即(-1,-2).
故答案为:5、(3,-2)或(-1,-2).