题目内容
【题目】如图,某小区门口的栏杆从水平位置AB绕固定点O旋转到位置DC,已知栏杆AB的长为3.5米,OA的长为3米,点C到AB的距离为0.3米,支柱OE的高为0.6米,那么栏杆端点D离地面的距离为____________米
【答案】2.4
【解析】
过D作DG⊥AB于G,过C作CH⊥AB于H,则DG∥CH,根据相似三角形的性质即可得到结论.
解:过D作DG⊥AB于G,过C作CH⊥AB于H,
则DG∥CH,
∴△ODG∽△OCH,
∴,
∵栏杆从水平位置AB绕固定点O旋转到位置DC,
∴CD=AB=3.5m,OD=OA=3m,CH=0.3m,
∴OC=0.5m,
∴,
∴DG=1.8m,
∵OE=0.6m,
∴栏杆D端离地面的距离为1.8+0.6=2.4(m).
【题目】如图,在钝角中,点为上的一个动点,连接,将射线绕点逆时针旋转,交线段于点. 已知∠C=30°,CA=2 cm,BC=7cm,设B,P两点间的距离为xcm,A,D两点间的距离ycm.
小牧根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.下面是小牧探究的过程,请补充完整:
(1)根据图形.可以判断此函数自变量X的取值范围是 ;
(2)通过取点、画图、测量,得到了与的几组值,如下表:
0.51 | 1.02 | 1.91 | 3.47 | 3 | 4.16 | 4.47 | |||
3.97 | 3.22 | 2.42 | 1.66 | a | 2.02 | 2.50 |
通过测量。可以得到a的值为 ;
(3)在平而直角坐标系xOy中.描出上表中以各对对应值为坐标的点,画出该函数的图象;
(4)结合画出的函数图象,解决问题:当AD=3.5cm时,BP的长度约为 cm.
【题目】为了解某校九年级学生阅读课外书籍的情况,某研究小组随机采访该校九年级的20位同学,得到这20位同学阅读课外书册数的统计信息,数据如下:
册数 | 0 | 2 | 3 | 5 | 6 | 8 | 10 |
人数 | 1 | 2 | 4 | 8 | 2 | 2 | 1 |
(1)这20位同学阅读课外书册数的众数是 册,中位数是 册;
(2)若该校九年级有600名学生,试估计该校九年级学生阅读课外书的总册数.