题目内容

【题目】如图,△ABC是等边三角形,点DBC上,△ADE是等腰三角形,AD AE ,∠DAE 100°,当DEAC时,求∠BAD和∠EDC的度数.

【答案】30°

【解析】

首先利用等边三角形的性质得出∠B=∠BAC=∠C=60°,再利用等腰三角形的性质得出∠ADE=∠E40°,进而得出∠BAD=10°,进而利用三角形外角性质得出答案.

解:∵△ABC是等边三角形

∴∠B=∠BAC=∠C=60°

∵AD =AE ∠DAE =100°

∴∠ADE=∠E =40°

∵DE⊥AC

∴ ∠DAC =∠EAC =50°

∴ ∠BAD=60°-50°=10°

∵∠ADC=∠B +∠BAD =70°

∴∠EDC =∠ADC -∠ADE =30°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网